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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1919

A CONTRIBUTION TO THE THEORY

OF PRESSURE STABILIZED STRUCTURES

By

A, C, Kyser

SUMMARY

A large-deformation analysis is presented for an element of a flexible
inflatable plate consisting of an array of contiguous tubes. The element is
represented by a transversely-loaded pressurized cylindrical chamber of
indefinite length having two flat sides connected by flexible but inextensible
membranes. The behavior of the cylindrical element is described for the
complete range of deformation for the case of lateral compression, shear,
or rolling loads, and a method is described for obtaining a graphical solu-
tion for the shape of the cross section under any given combination of loads.
It was found that under certain conditions large compressive deformations
give rise to geometrical instabilities, or conditions of negative spring rate.

I. INTRODUCTION

The load-vs-deformation behavior of inflatable structures is a subject
that has received considerable attention in recent years. This subject has
special importance in the design of light-weight deployable structures for
space applications. In Reference 1 this general problem is discussed with
special emphasis given to a theory for deflections of a type of inflatable
plate known as '""Airmat,'" which has been developed by the Goodyear Air-
craft Corporation. The Airmat construction consists of a flexible sandwich
having flexible skins connected together by a core of closely-spaced ''drop
cords." The sandwich-core chamber is pressurized to produce the desired
plate stiffness. The problems of static deflection and of vibration of this
type of structure are treated in References 2 and 3.



In certain applications for expandable pressure-stabilized plates, the
presence of closely-spaced drop cords may be undesirable because of re-
quirements for internal space, foldability, or minimum weight. For such
applications, the requirements may dictate the use of an alternate con-
struction for inflatable plates. One possible configuration consists of an
array of parallel contiguous cylindrical tubes such as that shown in Fig-
ure 1. This type of plate structure was discussed briefly in Reference 1.
Such a structure will be anisotropic in the sense that its load-vs-deforma-
tion characteristics (up to the buckling load) along the direction of the cyl-
inders will depend primarily on the properties of the materials of which the
construction is made, whereas the resistance to deformation across the
tubes will depend primarily on the pressure and the tube geometry.

The subject of the present paper is a fundamental investigation of the
basic mechanism by which an inflatable structure of this type transmits
load across the array of tubes. The analysis has been restricted to a sin-
gle idealized element of the array, consisting of an indefinitely long cylin-
drical chamber made from completely flexible but inextensible material.

The deformations of a structure of this type take place without chang-
ing the load-carrying ability of the materials which make up the structure.
Thus, the usable range of deformations is not limited to small deflections
in the usual sense. Because of the importance associated with developing
an understanding of the non-linear large-deformation behavior of this type
of inflatable structure, the analysis was made rigorously, without resort to
the limiting assumptions of small deflection thedry. The results which are
presented are, therefore, valid for the entire range of possible deforma-
tions.



II. ANALYSIS

A. Description of the Problem

The inflatable structural element under consideration here is a pres-
surized cylinder of indefinite length having a cross section as shown in Fig-
ure 2. The cylinder is constructed with two flat, rigid walls simulating the
webs and the symmetry conditions imposed by the adjoining elements, con-
nected together at their edges by flexible membranes representing the cover
of the plate-like structure. Under internal pressure, the cross section as-
sumes a preferred shape and the cylinder exhibits stiffness against loads
which would change the relative positions of the webs, or flats.

Deformations considered here are those resulting from loads (either
normal or shear forces or rolling moments) applied to the webs in direc-
tions parallel to the plane of the cross section. These loads represent the
internal shear forces, lateral compression, and bending moments of the
plate-like structure. In all cases the loads are taken to be uniformly dis-
tributed along the length of the cylinder, so that there is no load transferred
between sections of the cylinder. The problem can therefore be'treated with
a two-dimensional analysis. The matter of end closures for the cylinder is
not considered.

The assumption has been made that the internal pressure is both uni-
form throughout the cylinder, and invariant with changes in geometry of the
cross section. It has also been assumed that the flats of the cylinder are of
fixed widths and that the membranes are inextensible, with no stiffness in
bending.

For the sake of simplicity, the discussion has been restricted to those
cases for which the flats are equal in width and the membranes equal in arc
length. The arcs formed by the membranes in cross section are circular,
since the radius of curvature is determined by the pressure and tension,
which are uniform. In the initial geometry, shown in Figure 2, these cir-
cular arcs have a common center; thus, the undeformed cross sectionds
that of a right circular cylinder with flats on opposite sides.

It will be seen that any deformation under load must come about as a
result of a reorienting of the various inextensible components, rather than
as a result of elastic behavior of the components themselves. In this regard,
this structural element behaves in a manner that is more nearly representa-
tive of the kinematic mechanism than of the classical '"'structure.”

B. Method of Analysis

To establish the cross-sectional shape of the cylinder under any given
loading condition, a set of equations of equilibrium can be written for the



forces acting on the flats., These forces include the applied load and the
pressure load, as well as the undetermined tension loads in the membranes,
which act at undetermined angles to the flats. The equations of equilibrium,
together with the geometrical requirements, form a set of simultaneous,
transcendental, algebraic equations which, in principle, can be solved to
obtain the parameters of the cross-section geometry.

In the simpler cases these equations can be reduced algebraically to
useful form, which generally involves a geometrical parameter such as the
central angle of the membrane arc. In the more complex cases no such
reduction has been found, and the application of the equations is limited to
numerical evaluation for specific cases.

In all cases, however, it is a simple matter to establish the relative
positions of the centers of curvature of the two arcs, provided the loads on
either flat are known. Once the centers of curvature are established, it is
possible to establish loci of position for the four corners of the cross sec-
tion on which these corners must lie. The desired solution for the cross
section shape can be obtained easily by graphical iteration on the plots of
the loci.

The details of the analysis for the various types of deformation are
presented in the Appendix. A summary of the results of the analysis is
given in'the following section,

C. Load-vs-Deformation Behavior

(1) Deformation Under Lateral Compression Loads: The cross-
section geometry for deformation under lateral compression load is shown
in Figure 3. The nature of this deformation is such that the curvature of
the membranes increases and the membrane tension decreases with in-
creasing load. The centers of curvature are spread apart in the direction
normal to the lead direction by an amount which is proportional to the load.
As in all cases considered in this paper, the arc length of the membrane
remains invariant. It is this condition which establishes the height of the
cross section for any load.

A set of curves of normalized compression load-vs-deformation for
several ratios of arc length to flat width are shown in Figure 4. The nor-
malized spring rate is shown by the curve set in Figure 5, for which the
abscissa is the central half-angle of the membrane arc. For deformations
for which this angle tends to become larger than 90°, two cases are of in-
terest. If the cylinder is an element of a multicell structure, there may be
a restriction on the deformed cross section such that no portion of the mem-
brane can extend outside the region between the planes of the flats. In this
case the membranes of adjacent chambers will converge to produce an ap-
parent widening of the common flat, along with an accompanying shortening
of the effective arc lengths of the membranes. This mode of deformation is



such that the central half-angle becomes fixed at 90°. Since the compres-
sion spring rate is dependent only on the pressure and the central angle, the
cylinder then behaves like a linear spring (under the assumption of constant
pressure). This effect is shown by the dotted portion of the load-vs-deforma-
tion curves of Figure 4.

If there are no external restrictions on the shape of the cross section,
the central angle will continue to increase with increasing load, so that the
membrane arc is greater than a semicircle. As the deformation is in-
creased, the spring rate continues to decrease until a point is reached at
which the spring rate curve goes through zero, which is to say that the
ability of the cylinder to support compression loads is at a maximum, -and
further deformation will occur without increase of load. The zero-spring-
rate geometry is diagrammed in Figure 6. The value of the central half-
angle for this condition is 160°. This phenomenon reflects a "’geometrica.l
instability,'''or a condition in which the instability of the structure results
from its geometrical arrangement alone, rather from a combination of
geometry and material properties.

(2) Deformation Under Shear Loads: The conditions necessary for
producing a pure shear deformation of the cylinder are shown in Figure 7.
If the shear loads are applied in the planes of the flats, as shown, an ex-
ternally-applied righting moment is necessary for equilibrium. This right-
ing moment has the effect of shifting the shearing-load planes of action to
the mid-plane of the cylinder. The effect of the shearing load on the geom-
etry of the cross section is to cause the centers of curvature to be shifted
apart in a direction that is perpendicular to the load by an amount that is
proportional to the load. The membrane tension increases with increasing
shear load. It can be shown that the initial shear behavior of the cylinder
is the same as that of a rectangular shear pad having ‘the height of the cyl-
inder, the width of the flat, and a shear modulus of elasticity equal to the
internal pressure.

(3) Deformation Under Rolling-Moment Load: The deformation of
the cross section under a lateral rolling moment applied to the flats is
shown in Figure 8. In this case the centers of curvature remain coincident,
but are shifted away from the original position with respect to the webs.
The amount of this shift is such that the difference between the squares of
the radii is proportional to the applied moment.

An analytical expression has not been found for this case to allow the
cross-section parameters to be computed explicitly as a function of load.
A graphical solution has been worked out, however, for obtaining a load-
vs-deformation curve for any given initial geometry. The method, as shown
in Figure 9, consists of fixing the position of the center of curvature and
the direction of the plane of symmetxy, and establishing loci of position for
the corners of the cross section. These loci are mirror-image hyperbolic
spirals about the center of curvature. Once the loci are established, the



rolling moment for any given roll position of the plate can be determined
graphically by measuring the radii of curvature.

(4) Deformation Under Combined Loads: The effect on the cross
section of loads having compression, shear, and rolling components is such
that the total shift of the centers of curvature is the same as that which
would be computed by adding the shifts caused by the three components taken
individually. Thus, the pattern for the centers of curvature can be deter-
mined directly from the loads. Figure 10 shows a deformation of this type.

To determine the cross-section shape analytically requires, in the
general case, solution of five simultaneous transcendental equations with
five unknowns. As in the case of the rolling-moment load, however, the
general problem can be solved by a graphical approach involving loci of po-
sition for the corners of the cross section about the ''fixed" pattern of cen-
ters. In this case the solution involves a graphical iteration around the dia-
gram, as shown in Figure 11. The procedure is described in detail in the

Appendix.

The special case of combined shear and compression is of interest be-
cause of its simplicity. It can be shown that the effect of a fixed compres-
sion load on the shearing behavior of the cylinder is the same as the effect of
a decrease in the width of the flat by an amount equal to the spread of the
centers due to the compression load; in other words, the shear behavior is
determined by the membrane geometry independently of the width of the flat.
If the compression-induced spread of the centers is equal to the width of the
flat, the shear stiffness is zero, and for greater compression loads the
shear spring rate of the cylinder becomes negative. This condition reflects,
as in the case of a lateral normal load discussed above, a form of geometri-
cal instability, i.e., one which is independent of the properties of materials
used in the construction of the cylinder.



III. EXPERIMENT

In order to verify the theoretical work and to observe the large-
deformation behavior of a physical model, a series of experiments were
undertaken. In these experiments, a partially flexible cylinder was pres-
surized with water at a constant pressure level and loaded with lead
weights. Deformations were measured with dial-indicator gages.

The model is shown in Figure 12 and the experimental setup in Fig-
ure 13, The cylinder was fabricated by winding dry fiberglass roving
over a mandrel on which were mounted two 3/16-inch thick aluminum
plates, one on each side. After completion of the winding, the fibers
were bonded between these inner plates and a set of outer plates. The
fiberglass was left unbonded in the '""membrane' region to retain mini-
mum bending stiffness. A pressure-tight bladder was fabricated by mak-
ing a tube from a sheet of natural rubber about .020 inch thick and binding
the ends to rubber stoppers. The end-cap load was accounted for by sup-
porting the bladder with an oversized knit bag which was stretched longi-
tudinally to minimize circumferential stiffness.

To eliminate the effects of the end restraints, the upper plates were
segmented three inches from each end of the cylinder. The separate end
pieces were adjustable to allow aligning with the center section for each
new load, and held in position with bolts from the base plate, as shown in
the photograph.

The cylinder was pressurized hydrostatically from a standpipe about
14 it. high. An overflow near the upper end of the standpipe allowed the
pressure to be maintained at a constant level. Volume-change measure-
ments were made by collecting and weighing the water discharged at the
overflow. The internal pressure for these tests was 6.2 psi.

Compression loads were applied in the form of weights placed on a
stiff beam supported by the upper plate, as shown in Figure 13. It was
found that seemingly minor deviations from uniformity in the winding re-
sulted in a somewhat erratic initial behavior under compression loads.
By applying a sufficiently large tare load, however, it was found that the
behavior of the cylinder for higher loads was reasonably close to the the-
oretical predictions. The deflection was measured with a dial-indicator
gage at three points on the beam.

The results of the compression load test are shown in Figures 14
and 15. On these plots, the initial tare-load values have been set up to lie
on the theoretical curve, with the other values in correct position relative
to the tare values.

In the shear tests, the cylinder was loaded through a bridle such



that the load was applied in the horizontal mid-plane between the upper and
lower plates. An upward force was used to counteract the weight of the
loading apparatus on the upper plate so that a pure shear deformation was
obtained. The shear offset e was measured with dial gages near the ends
of the cylinder. Figure 16 shows the results of the shear test.

The roll test was set up with the cylinder loaded by a force couple
through a torsion bar clamped to the top plate of the cylinder. The roll
angle 8 was measured as deflection of two points on a rod attached to the
torsion bar. The results are shown in Figure 17. The theoretical curve
for this figure was determined by graphical construction,

One case of deformation under a combined load was included in the
test program. For this case, the cylinder was loaded simultaneously with
compression, shear, and rolling loads, and measurements were made of
the deformation. A theoretical prediction of the deformation was obtained
using the graphical iteration method described in the Appendix. A compar-
ison of the measured and theoretically-determined deformed cross sections
is shown in Figure 18.

Astro Research Corporation
Santa Barbara, California
September 24, 1962



APPENDIX

A. Initial Geometry

The structural element under consideration is a pressurized cylinder
of indefinite length having two flat rigid sides which are connected together
at their edges by flexible membranes, as shown in Figure 2. The widths of
the flat sides are taken to be equal, as are the arc lengths of the membranes.
Loads are applied to the cylinder through the flats, in the form. of distrib-
uted forces and rolling moments tending to distort the cross section. It is
assumed that all loads act in directions parallel to the plane of the cross
section, and that all sections along the length of the cylinder are loaded
equally so that there is no load transferred between sections. It is further
assumed that the flats are rigid and that the membranes are inextensible,
but perfectly flexible,

To establish the shape of the unloaded cylinder we can write the con-
ditions for equilibrium of the lower plate as shown in Figure 2. It will be
seen that for zero load the forces on a unit length of the cylinder must be
such that

2T cosa = pw , (A-1)
o o

where p is the internal pressure, w and O are as shown in Figure 1, and
the subscript o stands for the no-load condition. The tension T, is the
circumferential-direction tension force carried by the membrane per unit
length of the cylinder. With elementary cylinder theory it can be shown that

T = Po_ (A-2)

Substitution of equation (A-2) into equation (A-1) gives

2p cosx = w , (A-3)
o o

which is to say that the centers of curvature of the flexible sides coincide;
i, e., equation (A-3) establishes '"vertical' alignment of the centers, while
"horizontal" alignmentis required by symmetry. The unloaded cylinder
therefore has the shape of a circular cylinder with flats on opposite sides.
To establish the distance ho between the flats, given the arc length s and
the width w , note that

(A-4)

1}
©
R

s
2 o o
Thus, from equation (A-3),

(A-5)

0
g

~— cosl
o
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Further,

. s .
o = 2p° 51n0£o = O‘o SLnOLo . (A-6)

Dividing equation (A-5) by equation (A-3) gives

ho
-— = tan¢d , (A-T)
w o

and squaring and adding gives

2
s 2 2
o = w +ho . (A-8)
o

Solving equations (A-7) and (A-8) to eliminate @ , it is seen that the con-

dition for hg is

= arctan —5— . (A-9)

This equation is readily solved numerically by iteration or by any other
method for finding the roots of a transcendental equation. Another approach
isto solve equation (A-5) iterativelyforthe parameter ¢ , which can then
be used in equation (A-6) to give hgy

B. Deformation Under Compression Loads

If the cylinder is loaded symmetrically with a compression force, the
plates will be displaced toward the center plane. Since the arc lengths are
fixed, the curvature of the membranes must increase. The cross section
will, therefore, assume a shape like that shown in Figure 3. The new
equilibrium requirements are given by

2T cosx + F = pw

or (B-1)
2p cost = w - E
P

The geometry of the cross section is such that

2pcos@ = w - a . (B-2)
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Therefore,

F
a = = ; B-3
D { )

that is, the spacing between the centers of curvature is directly propor-
tional to the compressive load.

Given the plate width, the arc length, and the load, the angle & can
be determined readily. Noting that 2pa = s , it is convenient to rewrite
equation (B-2) as

cos w - a
o = s (B'4)

To find the deformation-vs-load characteristic {i.e., to find h as a
function of F) , the following geometrical relations can be used:

h = 2psina = gsinoz (B-5)

Combining equation (B-5) with equation (B-2) to eliminate « gives

2 2

S

2 {B-6)

arctan (w - a
h™ + (w -:a)

The spring rate with which the cylinder resists incremental deforma-

tion by compressive loads is |- %}% . To compute this it is convenient to
perform the differentiation with respect to the parameter & :
(_ aF) dF/ 4o (57
dh dh/da
From equations (B-3) and (B-4)
F = - 2 cosa
= p(w - 4 cos s
which gives
dF o sin@ + cos¥
a ~ P* [ 2 ] (B-8)
o
Also, from equation (B-5)
dh - s O cosQ - sinl (B-9)
do aZ
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Thus

dF | _ cosl + O sin«
(_ dh) - [sina - cosa] (B-10)

This function can be expressed in terms of h and F by the use of equa-~
tions (B-3), (B-4), and (B-5):

dF _ 20(w=-a) + sh _
(- dh) - p[th - s(w—a)] (B-11)

where

h2 + (W-a)2

2p

The spring rate of the cylinder against deformation from its initial,
no-load geometry can be obtained by setting a = 0 in eqguation (B-11):

(B-12)

The special case w = 0 represents the condition for a concentrated

m
line load on a flexible cylinder. For this case, of course, Oto =5 and

ho =20 = ﬁ— The initial spring rate is, from eguation (B-12), for
o
2
this case:

dF a s _ m _
(' dh) B p[h] N p[z] (B-13)
o
Note the lack of dependence on diameter.

Equation (B-10) shows that the spring rate in general is determined
only by the pressure and the angle @ . An interesting result of this can
be seen from a consideration of a flexible cylinder compressed between
two wide parallel plates, representing the situation in a multiple-chambered
plate-like structure compressed laterally beyond the point where two mem-
branes joining at a web form a finite angle. It is apparent that

m
o = B for any compressed position of such a cylinder. Thus, from equation

(B-10)
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Thus, the compressed cylinder {(with constant internal pressure) behaves
like a linear spring.

A geometrical interpretation of equation (B-10) is given in Figure 19
which shows the involute of a unit circle. Here the angle o is the angle
swept by the tangent to the generating radius r , while ¢ is the central
angle swept out by the involute curve about the center of the unit circle.
The Cartesian coordinates of the involute are

= sinld - O cosl

= cosld + O sin¢

Note that
x _ cost + & sinQ _
coto = y T sin® - & cosQ (B-14)
Thus the spring rate is
dF
(- an| = P cot® (B-15)
This relation may be expressed in terms of compliance:
dh 1
-—] = =t -16
( aF > ang (B-16)

Note that the compliance, tan¢ , is numerically equal to the y value of
the intersection of the line OP and the line (shown dashed) x =1 . Itis
readily seen that the compliance can change by a very large factor. In-
deed, at the angle at which the involute curve crosses the y axis the
compliance becomes infinite (i.e., the spring rate is zero) and thereafter
is negative. This occurs at

-cot = @ = 2,80 = 160
The geometry for this condition is shown in Figure 6.

A geometrical interpretation of the stiffness relation is shown in
Figure 20, The origin O for this diagram is the center of curvature of the
flexible side of the cylinder, while the curve is the locus of the ""corner'
of the cross section as ¢ changes, with the center of curvature remaining
stationary and the plate moving parallel to its original position. The polar
coordinates (0, &) of this locus must satisfy the equation

s
pa—z

This equation describes a hyperbolic spiral. Its Cartesian coordinates are
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- - _ h
y = 0 sind = >
w-a (B-17)
X = P cosx = —Z—

Now consider in the light of this diagram the behavior of the cylinder
under a compression load. If an incremental load AF is added to the
load F , the centers of curvature of the sides will move outward from the

centerline of the cylinder a distance of 2 Aa = %épf . Referred to the
diagram of Figure 20, this distance is a horizontal displacement of the cor-

1 AF . . . . . .
ner by an amount > in the direction of the origin. Accompanying this

. . . . . 1
horizontal displacement is a vertical displacement of - 3 Ah . Thus, the

change in height per unit of change in load (i. e., the compliance of the
cylinder) is represented by the slope of the spiral:

ay _ 28, _Ah
Ax ~ AF/ = PI"AF
2p
or (B-18)
dh 1 dy _ 1
T 4aF p dx ptan(p

where ¢ is the slope angle of the spiral. It can be readily verified that
the slope of the spiral gives the same function @ (@) as the central angle
of the involute of the unit circle.

Figure 4 shows a set of curves for the normalized lateral compres-
sion load-vs-deflection for several values of the geometrical parameter

s/w and for deformations either unrestrained or limited by adjoining ele-
ments. The spring rate for any particularocondition is the slope of the
curve at the point in question. The @& = 90" contour where the deformation

characteristics branch due to restraints coincides with the line ;‘—N' =

Figure 5 is a plot of normalized spring rate vs the angle @ . F has
been normalized by the factor pw and h has been normalized by hg
The initial~condition contour is also shown. For these normalizing refer-
ences, the initial spring rate has a minimum near o = 60°

C. Deformation Under Shearing Loads

The deformed shape of a cylinder subjected to a shearing load is shown



in Figure 7. It can be seen from this diagram that, for reasons of symme-
try,

o, = P, = P
@ = B,; B = a
S (C-1)
. - ) +B o, +B,
- 2 2
By 0,-8,
v = 2 = 2 J

An externally-applied righting moment is necessary for roll equilibrium of
the cylinder. To maintain anti-symmetry, let the moments applied to the
upper and lower plates be equal. Thus,

- &h -
M o= = (C-2)

This moment has the value necessary to shift the shearing loads to the mid-
plane of the cylinder.

The condition for equilibrium of vertical forces on the lower plate is
that

T1 cos()z1 + T2 cos(Jt2 = pw

Recalling that

we may write this as

o cosOt1 +p cosOl2 = w (C-3)

Thus, the horizontal displacement between the centers of curvature, cor-
responding to the distance a in the compression case, is zero.

Equilibrium of the lateral forces on the lower plate demands that

T1 smOt1 +Q = T2 smOt2

which is to say that

(C-4)

o D

psmaz - p smal

15
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By comparing this expression with the requirements of the geometry of the
cross section, it can be seen that

b o= 2 (C-5)

i, e., the vertical displacement between the centers is proportional to the
shear load.

Adding the moments which tend to rotate the lower plate about its
right-hand corner, we see that

, - P¥_
T1c050£1 w > + M

Substitution of equations (2) and (5) gives

w bh
o = —_—t — -
p cosa, >t Sy (C-6)
Similarly
w bh
o] cos(Jt2 = ST e {C-7)
Another basic condition for the cross section is given by the geometry:
psin()t1 +p sin.B1 = h (C-8)
Finally, the condition for fixed arc length yields:
= = o = ag -
s play, +B)) pla, +B,) 20 (C-9)
This condition is more conveniently handled in terms of O . Substituting

0 and ¥ for @ and B in equations (C-3), {C-4), (C-6), (C-8) yields the
following equations for the cross section:

g—cosc cosY = WwW (C-10)
gcoso' siny = b (C-11)
% sin0 cosy = h (C-12)
(_sr_ sin0 siny = % = e (C-13)

The fourth relation is redundant but is included for convenience. Here,
e is the shear offset.



From these relations it can be seen that

tanC

gl €&

(C-14)

olo

tany (C-15)

vlo

If equations (C-10) through (C-13) are squared and then added the result is

3)2 2, .2, .2, 2

- w +b +h + e (C-16)

Equations (C-14) and (C-16) can be combined to eliminate O , in order to
obtain a relation for h

SZ [ h]z
= |arctan — (C-17)
w2 + b2 + hZ 4 & w

If it is desired to find h it is possible to solve equation (C-17) numerically.
An alternate and possibly more expedient approach is to solve first for the
angle 0 . A convenient expression for O can be obtained by squaring and
adding equations ({C-10) and (C-11):

cosg sz + b2

> = — (C-18)

This relation is readily solved numerically by iteration.
The shear spring rate can be determined from equation (C-15):
Q = pwtany

Thus

aQ _ _pw (C-19)

dv 2

cos ¥

Initially, cosy = cosyYy =1 . The initial shear spring rate is therefore

dQ _ -
(d‘yo = pw (C-20)

D. Deformation Under Rolling Loads

Consider now the deformation of the cylinder under a rolling moment

17
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applied to the plates. It can be seen that in the absence of a net shearing
or compressive force the centers of curvature for the membranes will co-
incide. The deformed cylinder will therefore have a cross-section shape
of the nature of that shown in Figure 8. The condition for equilibrium of
vertical forces on the lower plate is

s s
o+ o— = = -
202 cos 2 201 coscr1 W CcOs > (D-1)

Similarly, the horizontal equilibrium is

S . S . . 6
o - — —_ -
2 511 2 201 51n0'1 w Sll"l2 (D 2)

These relations can be squared and added together to eliminate 8

AR

Note that this is the law of cosines for the triangle defined by the center of
curvature and the plate.

= w (D-3)

s
202) cos(CJ'l + (:J'2

A second equation relating 0] and 02 can be obtained by taking
moments about a section through the horizontal centerplane:

p, +p
1 2
TZ - Tl 2 = M ,
or
2 2
s 2M
-— -— = — D-4)
20 ) (
20‘2 1 p

Equations (D-3) and {D-4) can be solved simultaneously for 0}, and 02 as
functions of M . One scheme for accomplishing this numerically is to
iterate with the system

8 ) _ M s \2 )
202 p 20‘1
(D-5)
s 2 2 8 2 s s
—_— = w - -_— + 2|— —)cos(o + 0.)
201 2(‘1’2 201 202 2 1

/
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| Here a value is assumed for 0] , and a value for 0 is computed from the
‘ first equation. These two values are then used on the right side of the sec-
5 ond equation to compute an improved value for 0; , which is then used in
the first equation to recompute 0 , etc. Once the parameters 0] and 0
are calculated, the remaining dimensions of the cross section can be deter-
mined immediately.

A graphical method of solving this problem is shown in Figure 9. In
this diagram the curves represent the loci of the two corners of the lower
plate for a succession of deformed cross-section shapes, all plotted on the
diagram with the centers of curvature at the origin and the horizontal center-
lines coincident. The polar coordinates of any point on the locus are (p,0)

. . s
Since all points along the curves have in common the arc length > from the

centerline, the curves must satisfy the equation

pO’ =

[T

This is the equation of a hyperbolic spiral, as discussed in conjunction with
Figure 20.

The two loci of position for the corners are therefore mirror-image
spirals about the fixed center of curvature. Once these spirals have been
established for any given initial geometry, a point on the curve M vs 8
can be determined by connecting the two spirals with a line of length w
The angle 6 can then be measured directly, and the moment can be com-
puted from equation (D-4); i.e.,

2 2 _ 2M
P, =P T (D-6)

It is also of interest to note that if the position of the lower plate is
retained as the coordinate basis the lateral shift of the center of curvature
is proportional to the moment. This can be established by taking moments
about the right-hand corner of the lower plate:

w
\ . = c = .
| T1 cosOt1 w PW > M
or
P cost = Z. M (D-7)
1 2 pw

Thus the lateral shift of the center is pr

An expression for the initial stiffness may be derived using the model




of Figure 9. It can be seen that for small displacements from the initial
(symmetrical) geometry, a slight shift of the plate will produce equal
changes in the x coordinates of the corners and equal but opposite changes
in the y coordinates. As a result of such a shift of an amount Ax , the

0
plate will be tilted by a small angle = , where

2

6 Ay, - By, 24y

2 w - w
But dy

Ay = ax Ax (D-8)

Thus

_9_ - ZAx_ch

2 w dx

From equation (D-6) it can be seen that

2M 2 2
> - P, =P, = (P, + PP, - P} = 2p_ - 24p (D-9)
where Pg is the initial radius of curvature and Ap is the change in p
resulting from Ax . It can also be seen from the diagram that
Vi o+ S :
Ap = Ax V1 + T cos((‘J‘o - (po) (D-10)
o
where
<po = arctan(—z)
o

Hence, the moment is related to Ax as follows:

2
M = pro Ax \[1 +(-§§) cos(oo - (Po) (D-11)

(o]

The initial stiffness of the cylinder is therefore

dy 2
M - ppoW L+ (dx) s(O - ) D-12)
6 - 2 dy co o (’oo
© dx

Here pPp and Oy belong to the initial geometry. This expression may be



simplified by substituting tan(po for

dy o
ax )o . This gives

Ml - B¥|p coso cotp + p sino
6 2 o o o o o
o
or {D-13)
2
M pw
= = + (o)
(9) 1 [cot(po tan o]
o
Since coto = dx
= dy
where
. _ s .
y = P sin0C = >0 sinC
= PcosC = = o
x = c = 3g cos

it can be readily verified that

cos0 + O sin0O
sin0 - C cosCO

cot® (D-14)

This function was discussed in the compression-load section.

E. Deformation Under Combined Loads

Figure 10 shows the cross section of the cylinder as deformed under
an arbitrary load having compressive, shearing, and rolling components.
For the sake of convenience, a coordinate system has been chosen such that
the lower plate remains fixed and the deflection of the upper plate is meas-
ured relative to the lower plate. Furthermore, the components of the load
on the upper plate are taken such that they remain oriented rectangularly
with the lower plate. The set of equations which describe the cross section
in terms of the angles & , B , O can be written readily in the manner
used previously for the special cases:

w-a M
p. cos@ = -— , a=F/ E-1)
1 1 2 1934 P (
w-a M
pz colet2 = + ow (E-2)

. . Q
(44 - = = - -
p2 sint 2 pl 51n0z1 b , b (E-3)



P cosﬁ1 t P, cosB2 = wcosf - a (E-4)

1

pl s1nB1 - p2 smﬁ2 = b - w sinb (E-5)

Furthermore, the arc-length relation holds:

1t
4]

2p (o) + ’31)
(E-6)
2p, (o, + Bz)

It
1]

If equations (E-6) are substituted for P in equations (E-1) through (E-5),
the result is a set of five simultaneous equations with five unknows: @)
az B1 Bz B . Solution of this set will yield the dimensions of the cross
section.

An alternate method of describing the cross-section geometry is by
the use of angles O and ¥

. . a 4+ Bl . . a, + 32
1 2 T2 2
(E-7)
e B) % B,
[S U 2 $ Y F 2
With this set of variables the arc-length condition is somewhat more
easily applied:
2p. 0. = 2p_.0C. = s (E-8)

The equations defining the geometry of the cross section in terms of the
new variables are as follows:

€
®
g

pl c:osCT1 cos‘)'1 + p1 s1n0'1 sm‘y1 = - —pw (E-9)
p. cosO. cosy. + p. sing. siny. = 222 M (E-10)
2 2 2 2 2 2 T2 PW
w
inC - ino = — i -
p2 sin0, cos‘y2 pl sin0, cos‘)'1 > sinf (E-11)
. w
i ing i = - X (- -
p2 s1n02 s1n‘y2 + pl sin0, siny, > (1-cosB) (E-12)
w
o i - o i = - — si -
pzcos , siny, p, cos0, siny, b > sinf (E-13)
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Analytical solution of a set of equations such as these is not a practi-
cal matter. Numerical solutions can be obtained by iteration using a digital
coruputer. The nature of the problem is such that the system can also be
solved for any given set of the parameters quite readily by a graphical iter-
ation method. This method is illustrated in Figure 11.

The graphical solution depends first on locating the two centers of
curvature with respect to each other. This can be done at once provided
the loads F and Q are known. Given the center pattern, then, it is pos-
sible to construct for each of the four corners of the cross section a locus
which will include the correct position of the corner. The loci for the edges
of the lower plate are necessarily vertical lines, since the distances
picos®) and pP2cosz are fixed by equations (E-1) and (E-2), and since the
distance a is by definition measured in a direction parallel to the lower
plate. It should be observed that the displacerment of the two centers of
curvature is a direct superposition of the shifts due to each of the three
components of the load, taken separately., Thus, the horizontal and verti-
cal separations, a and b , are both proportional to and in directions per-
pendicular to their associated load components, and the lateral displacement
of the pattern itself is proportional to the moment.

The loci for the corners of the upper plate are shown on the diagram
as curves. These curves have the property that every point on them lies a
fixed distance from the vertical locus {of the lower plate) along a circular
arc centered on the predetermined center of curvature. Thus, regardless
of the position of the lower plate, the corners of the upper plate will lie on
these loci.

Once the loci are established the iterative solution may proceed rap-
idly using the conditions that the lower plate is horizontal and that the upper
plate has width w . The partial solution indicated in Figure 11 shows the
iterative path: A position is assumed for the lower plate and the correspond-
ing position for the upper right-hand corner by swinging an arc about Cen-
ter 2. The tentative position of the upper left-hand corner is found by
swinging an arc of radius w from Locus 2 to Locus 1. This position is ex-
trapolated to the lower plate with an arc about Center 1 down to the vertical
locus, thereby improving the initial assumption. This process appears to
have the characteristics that it converges in one direction (i. e., counter-
clockwise in the example) and diverges in the other.

Consider now the case of combined shear and compression for which
antisymmetry is retained. In this case

= B, = 0¥
B = a = O+vy
1 2 (E-14)
fo = O = O = a_té
1 2 2
_ . _ a-8
Y, = =¥ =Y = =
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Equations (E-1) through (E-5) therefore reduce to
2pcosO cosy = w-a

2pcosT siny = b (E-15)
M

- —_— = e

pw

1

2p sin0 siny

| In addition, we can write
2p sinC cosv = h

Of these four relations any one can be considered redundant. Note that
h and e are the height and the shear offset as used in the shear-load case.

The restoring moment M 1is necessary for static equilibrium. Thus
-2M = Qh+ Fe (E-16)

The negative sign on the moment is necessary because of the direction of
rotation of M in Figure 9.

A final reduction of the four (0,7%) relations gives

e
tan@® = = =

w-a b (E-18)
b

w-a

tany

=lo

These equations are identical to those derived for the pure shear case
except that {(w-a) here replaces w . Thus, the shear behavior of the
cylinder under a compression load is the same as that of an unloaded cylinder
with the same membrane geometry. Note that the shear spring rate is

Q _ w-a
& - > (E-19)
cos ¥

o |~

If w=a the shear spring rate is zero, and for compression loads greater
than F=pw the cylinder is unstable in shear.
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Figure 1. Transversely Loaded Inflatable Multiweb Beam Structure.
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Figure 10. Combined Load Deformation,
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Figure 19. Involute of Unit Circle.
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